Your Choice

Saturday 9 June 2012

Network switch

An Ethernet network that is controlled by a switch instead of a shared hub. The switch cross connects all clients, servers and network devices, giving each sending-receiving pair the full rated transmission speed. Half-duplex speed between nodes is 10 Mbps for Ethernet (10Base-T) and 100 Mbps for Fast Ethernet (100Base-T). Full-duplex is 20 and 200 Mbps. For more connections, a switch port can be wired to another switch or hub.

From Shared to Switched

Throughout the 2000s, migrating from shared Ethernet to switched Ethernet provided a dramatic increase in throughput. For example, a 24-port 100Base-T hub shares the total 200 Mbps bandwidth with all 12 sender/receiver pairs. By replacing the hub with a switch, each of the 12 sender/receiver pairs has the full 200 Mbps bandwidth.

In addition, migration only requires replacing the hubs with switches. The existing network adapters (NICs) in every computer do not require changing, and as long as the cables can handle the speed of the switch ports, the cables are still valid. See N-way and cable categories.

Ethernet Switch
This unmanaged 10/100 16-port switch from Omnitron supports 10Base-T and 100Base-T (10 Mbps and 100 Mbps Ethernet). This was one of the first fanless switches that was totally quiet. See Ethernet switch.

Download Computer Desktop Encyclopedia to your PC, iPhone or Android.

    Unanswered Questions
    New Answers
    Q&A Categories
    Coupons
    Guides

    Sign In
    |
    Sign Up
    Home
    Search
    Settings
    Top Contributors
    Help Center
    English?

Home
Featured Videos:
Top

            Play
            Using Wi-Fi on Your BlackBerry Bold
            Play
            Brightcove Links With Akamai for Global Content Delivery...
            Play
            How to Deploy Adobe Reader using GFI LANguard
            Play
            Streaming Video on Mobile Phones

View more Technology videos
Wikipedia on Answers.com:
Network switch
Top
Home > Library > Miscellaneous > Wikipedia
50-port network switch

A network switch or switching hub is a computer networking device that connects network segments or network devices. The term commonly refers to a multi-port network bridge that processes and routes data at the data link layer (layer 2) of the OSI model. Switches that additionally process data at the network layer (layer 3) and above are often referred to as layer-3 switches or multilayer switches.

The first Ethernet switch was introduced by Kalpana in 1990.[1]
Contents

    1 Function
    2 Role of switches in networks
    3 Layer-specific functionality
        3.1 Layer 1 hubs versus higher-layer switches
        3.2 Layer 2
        3.3 Layer 3
        3.4 Layer 4
        3.5 Layer 7
    4 Types of switches
        4.1 Form factor
        4.2 Configuration options
            4.2.1 Traffic monitoring on a switched network
            4.2.2 Typical switch management features
    5 See also
    6 References
    7 External links

Function

A switch is a telecommunication device which receives a message from any device connected to it and then transmits the message only to that device for which the message was meant. This makes the switch a more intelligent device than a hub (which receives a message and then transmits it to all the other devices on its network.) The network switch plays an integral part in most modern Ethernet local area networks (LANs). Mid-to-large sized LANs contain a number of linked managed switches. Small office/home office (SOHO) applications typically use a single switch, or an all-purpose converged device such as a residential gateway to access small office/home broadband services such as DSL or cable internet. In most of these cases, the end-user device contains a router and components that interface to the particular physical broadband technology. User devices may also include a telephone interface for VoIP.

An Ethernet switch operates at the data link layer of the OSI model to create a separate collision domain for each switch port. With 4 computers (e.g., A, B, C, and D) on 4 switch ports, A and B can transfer data back and forth, while C and D also do so simultaneously, and the two conversations will not interfere with one another. In the case of a hub, they would all share the bandwidth and run in half duplex, resulting in collisions, which would then necessitate retransmissions. Using a switch is called microsegmentation. This allows computers to have dedicated bandwidth on point-to-point connections to the network and to therefore run in full duplex without collisions.
Role of switches in networks

Switches may operate at one or more layers of the OSI model, including data link and network. A device that operates simultaneously at more than one of these layers is known as a multilayer switch.

In switches intended for commercial use, built-in or modular interfaces make it possible to connect different types of networks, including Ethernet, Fibre Channel, ATM, ITU-T G.hn and 802.11. This connectivity can be at any of the layers mentioned. While layer-2 functionality is adequate for bandwidth-shifting within one technology, interconnecting technologies such as Ethernet and token ring is easier at layer 3.

Devices that interconnect at layer 3 are traditionally called routers, so layer-3 switches can also be regarded as (relatively primitive) routers.

In some service provider and other environments where there is a need for a great deal of analysis of network performance and security, switches may be connected between WAN routers as places for analytic modules. Some vendors provide firewall,[2][3] network intrusion detection,[4] and performance analysis modules that can plug into switch ports. Some of these functions may be on combined modules.[5]

In other cases, the switch is used to create a mirror image of data that can go to an external device. Since most switch port mirroring provides only one mirrored stream, network hubs can be useful for fanning out data to several read-only analyzers, such as intrusion detection systems and packet sniffers.
Layer-specific functionality
Main article: Multilayer switch
A modular network switch with three network modules (a total of 24 Ethernet and 14 Fast Ethernet ports) and one power supply.

While switches may learn about topologies at many layers, and forward at one or more layers, they do tend to have common features. Other than for high-performance applications, modern commercial switches use primarily Ethernet interfaces.

At any layer, a modern switch may implement power over Ethernet (PoE), which avoids the need for attached devices, such as a VoIP phone or wireless access point, to have a separate power supply. Since switches can have redundant power circuits connected to uninterruptible power supplies, the connected device can continue operating even when regular office power fails.
Layer 1 hubs versus higher-layer switches

A network hub, or repeater, is a simple network device. Hubs do not manage any of the traffic that comes through them. Any packet entering a port is broadcast out or "repeated" on every other port, except for the port of entry. Since every packet is repeated on every other port, packet collisions affect the entire network, limiting its capacity.

There are specialized applications where a hub can be useful, such as copying traffic to multiple network sensors. High end switches have a feature which does the same thing called port mirroring.

By the early 2000s, there was little price difference between a hub and a low-end switch.[6]
Layer 2

A network bridge, operating at the data link layer, may interconnect a small number of devices in a home or the office. This is a trivial case of bridging, in which the bridge learns the MAC address of each connected device.

Single bridges also can provide extremely high performance in specialized applications such as storage area networks.

Classic bridges may also interconnect using a spanning tree protocol that disables links so that the resulting local area network is a tree without loops. In contrast to routers, spanning tree bridges must have topologies with only one active path between two points. The older IEEE 802.1D spanning tree protocol could be quite slow, with forwarding stopping for 30 seconds while the spanning tree would reconverge. A Rapid Spanning Tree Protocol was introduced as IEEE 802.1w, but the newest edition of IEEE 802.1D adopts the 802.1w extensions as the base standard.

The IETF is specifying the TRILL protocol, which is the application of link-state routing technology to the layer-2 bridging problem. Devices which implement TRILL, called RBridges, combine the best features of both routers and bridges.

While layer 2 switch remains more of a marketing term than a technical term,[citation needed] the products that were introduced as "switches" tended to use microsegmentation and Full duplex to prevent collisions among devices connected to Ethernet. By using an internal forwarding plane much faster than any interface, they give the impression of simultaneous paths among multiple devices. 'Non-blocking' devices use a forwarding plane or equivalent method fast enough to allow full duplex traffic for each port simultaneously.

Once a bridge learns the topology through a spanning tree protocol, it forwards data link layer frames using a layer 2 forwarding method. There are four forwarding methods a bridge can use, of which the second through fourth method were performance-increasing methods when used on "switch" products with the same input and output port bandwidths:

    Store and forward: The switch buffers and verifies each frame before forwarding it.
    Cut through: The switch reads only up to the frame's hardware address before starting to forward it. Cut-through switches have to fall back to store and forward if the outgoing port is busy at the time the packet arrives. There is no error checking with this method.
    Fragment free: A method that attempts to retain the benefits of both store and forward and cut through. Fragment free checks the first 64 bytes of the frame, where addressing information is stored. According to Ethernet specifications, collisions should be detected during the first 64 bytes of the frame, so frames that are in error because of a collision will not be forwarded. This way the frame will always reach its intended destination. Error checking of the actual data in the packet is left for the end device.
    Adaptive switching: A method of automatically selecting between the other three modes.

While there are specialized applications, such as storage area networks, where the input and output interfaces are the same bandwidth, this is not always the case in general LAN applications. In LANs, a switch used for end user access typically concentrates lower bandwidth and uplinks into a higher bandwidth.
Layer 3

Within the confines of the Ethernet physical layer, a layer-3 switch can perform some or all of the functions normally performed by a router. The most common layer-3 capability is awareness of IP multicast through IGMP snooping. With this awareness, a layer-3 switch can increase efficiency by delivering the traffic of a multicast group only to ports where the attached device has signaled that it wants to listen to that group.
Layer 4

While the exact meaning of the term layer-4 switch is vendor-dependent, it almost always starts with a capability for network address translation, but then adds some type of load distribution based on TCP sessions.[7]

The device may include a stateful firewall, a VPN concentrator, or be an IPSec security gateway.
Layer 7

Layer-7 switches may distribute loads based on Uniform Resource Locator URL or by some installation-specific technique to recognize application-level transactions. A layer-7 switch may include a web cache and participate in a content delivery network.[8]
Rack-mounted 24-port 3Com switch
Types of switches
Form factor

    Desktop, not mounted in an enclosure, typically intended to be used in a home or office environment outside of a wiring closet
    Rack mounted - A switch that mounts in an equipment rack
    Chassis - with swappable module cards
    DIN rail mounted - normally seen in industrial environments or panels

Configuration options

    Unmanaged switches — These switches have no configuration interface or options. They are plug and play. They are typically the least expensive switches, found in home, SOHO, or small businesses. They can be desktop or rack mounted.
    Managed switches — These switches have one or more methods to modify the operation of the switch. Common management methods include: a command-line interface (CLI) accessed via serial console, telnet or Secure Shell, an embedded Simple Network Management Protocol (SNMP) agent allowing management from a remote console or management station, or a web interface for management from a web browser. Examples of configuration changes that one can do from a managed switch include: enable features such as Spanning Tree Protocol, set port bandwidth, create or modify Virtual LANs (VLANs), etc. Two sub-classes of managed switches are marketed today:
        Smart (or intelligent) switches — These are managed switches with a limited set of management features. Likewise "web-managed" switches are switches which fall in a market niche between unmanaged and managed. For a price much lower than a fully managed switch they provide a web interface (and usually no CLI access) and allow configuration of basic settings, such as VLANs, port-bandwidth and duplex.[9]
        Enterprise Managed (or fully managed) switches — These have a full set of management features, including CLI, SNMP agent, and web interface. They may have additional features to manipulate configurations, such as the ability to display, modify, backup and restore configurations. Compared with smart switches, enterprise switches have more features that can be customized or optimized, and are generally more expensive than smart switches. Enterprise switches are typically found in networks with larger number of switches and connections, where centralized management is a significant savings in administrative time and effort. A stackable switch is a version of enterprise-managed switch.

Traffic monitoring on a switched network

Unless port mirroring or other methods such as RMON, SMON or sFlow are implemented in a switch,[10] it is difficult to monitor traffic that is bridged using a switch because only the sending and receiving ports can see the traffic. These monitoring features are rarely present on consumer-grade switches.

Two popular methods that are specifically designed to allow a network analyst to monitor traffic are:

    Port mirroring — the switch sends a copy of network packets to a monitoring network connection.
    SMON — "Switch Monitoring" is described by RFC 2613 and is a protocol for controlling facilities such as port mirroring.

Another method to monitor may be to connect a layer-1 hub between the monitored device and its switch port. This will induce minor delay, but will provide multiple interfaces that can be used to monitor the individual switch port.
Typical switch management features
Linksys 48-port switch
HP Procurve rack-mounted switches mounted in a standard Telco Rack 19-inch rack with network cables

    Turn particular port range on or off
    Link bandwidth and duplex settings
    Priority settings for ports
    IP Management by IP Clustering.
    MAC filtering and other types of "port security" features which prevent MAC flooding
    Use of Spanning Tree Protocol
    SNMP monitoring of device and link health
    Port mirroring (also known as: port monitoring, spanning port, SPAN port, roving analysis port or link mode port)
    Link aggregation (also known as bonding, trunking or teaming)
    VLAN settings
    802.1X network access control
    IGMP snooping

Link aggregation allows the use of multiple ports for the same connection achieving higher data transfer rates. Creating VLANs can serve security and performance goals by reducing the size of the broadcast domain.
See also

    Bridging (networking)
    Console server
    Energy-Efficient Ethernet
    Fibre Channel switch
    Fully switched network
    LAN switching
    Local area network
    Router (computing)
    Stackable switch
    Telephone exchange
    Turing switch
    Wide area network

References

    ^ Robert J. Kohlhepp (2000-10-02). "The 10 Most Important Products of the Decade". Network Computing. Retrieved 2008-02-25.
    ^ Cisco Catalyst 6500 Series Firewall Services Module, Cisco Systems,2007
    ^ Switch 8800 Firewall Module, 3Com Corporation, 2006
    ^ Cisco Catalyst 6500 Series Intrusion Detection System (IDSM-2) Module, Cisco Systems,2007
    ^ Getting Started with Check Point Fire Wall-1, Checkpoint Software Technologies Ltd., n.d.
    ^ Matthew Glidden (October 2001). "Switches and Hubs". About This Particular Macintosh blog. Retrieved June 9, 2011.
    ^ S. Sathaye (January 1999), The Ins and Outs of Layer 4+ Switching, NANOG 15, "It usually means one of two things: - 1. Layer 4 information is used to prioritize and queue traffic (routers have done this for years) - 2. Layer 4 information is used to direct application sessions to different servers (next generation load balancing)."
    ^ How worried is too worried? Plus, a Global Crossing Story., NANOG mailing list archives, S. Gibbard,October 2001
    ^ Tech specs for a sample HP "web-managed" switch (archived page from web.archive.org)
    ^ Remote Network Monitoring Management Information Base, RFC 2819, S. Waldbusser,May 20

No comments:

Post a Comment

Tricks

Search JavaScript Kit:
 

This free script provided by
JavaScript Kit